Mining frequent biological sequences based on bitmap without candidate sequence generation

نویسندگان

  • Qian Wang
  • Darryl N. Davis
  • Jiadong Ren
چکیده

Biological sequences carry a lot of important genetic information of organisms. Furthermore, there is an inheritance law related to protein function and structure which is useful for applications such as disease prediction. Frequent sequence mining is a core technique for association rule discovery, but existing algorithms suffer from low efficiency or poor error rate because biological sequences differ from general sequences with more characteristics. In this paper, an algorithm for mining Frequent Biological Sequence based on Bitmap, FBSB, is proposed. FBSB uses bitmaps as the simple data structure and transforms each row into a quicksort list QS-list for sequence growth. For the continuity and accuracy requirement of biological sequence mining, tested sequences used during the mining process of FBSB are real ones instead of generated candidates, and all the frequent sequences can be mined without any errors. Comparing with other algorithms, the experimental results show that FBSB can achieve a better performance on both run time and scalability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Frequent Sequences Using Itemset-Based Extension

In this paper, we systematically explore an itemset-based extension approach for generating candidate sequence which contributes to a better and more straightforward search space traversal performance than traditional item-based extension approach. Based on this candidate generation approach, we present FINDER, a novel algorithm for discovering the set of all frequent sequences. FINDER is compo...

متن کامل

High Fuzzy Utility Based Frequent Patterns Mining Approach for Mobile Web Services Sequences

Nowadays high fuzzy utility based pattern mining is an emerging topic in data mining. It refers to discover all patterns having a high utility meeting a user-specified minimum high utility threshold. It comprises extracting patterns which are highly accessed in mobile web service sequences. Different from the traditional fuzzy approach, high fuzzy utility mining considers not only counts of mob...

متن کامل

Efficient Sequential Pattern Mining Algorithms

Sequential pattern mining is a heavily researched area in the field of data mining with wide variety of applications. The task of discovering frequent sequences is challenging, because the algorithm needs to process a combinatorially explosive number of possible sequences. Most of the methods dealing with the sequential pattern mining problem are based on the approach of the traditional task of...

متن کامل

A Top-Down Method for Mining Most-Specific Frequent Patterns in Biological Sequences

The emergence of automated high-throughput sequencing technologies has resulted in a huge increase of the amount of DNA and protein sequences available in public databases. A promising approach for mining such biological sequence data is mining frequent subsequences. One way to limit the number of patterns discovered is to determine only the most specific frequent subsequences which subsume a l...

متن کامل

A Top-down Approach for Mining Most Specific Frequent Patterns in Biological Sequence Data

The emergence of automated high-throughput sequencing technologies has resulted in a huge increase of the amount of DNA and protein sequences available in public databases. A promising approach for mining such biological sequence data is mining frequent subsequences. One way to limit the number of patterns discovered is to determine only the most specific frequent subsequences which subsume a l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers in biology and medicine

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2016